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Nonlinear theory of open-channel steady flow past a 
solid surface of finite-wave-group shape 

By M. S .  HOWE 
Imperial College, London 

(Received 17 June 1967) 

This paper deals with a detailed application of the Whitham theory of finite ampli- 
tude wave propagation to open-channel steady flow of water of infinite depth 
past a slowly modulated wavy wall. A numerical procedure first used by Gara- 
bedian & Lieberstein (1958) for the solution of ‘stably-posed, elliptic Cauchy 
problems is employed to obtain a map of the wave pattern on the free surface 
of the water. The appearance of a ‘shock’ in this solution is discussed in terms of 
previous analytical and experimental results. 

1. Introduction 
A general theory governing the dispersion of slowly varying nonlinear wave 

trains has been proposed by Whitham (1965u, b).  It consists in first supposing 
the wave train to be locally a uniform solution of the equations of motion from 
which an average Lagrangian is calculated in terms of the wave parameters. The 
equations describing the slow variation of these parameters are then derived 
by an application of Hamilton’s Principle, that the time integral of the Lagran- 
gian of the whole system is stationary. 

Lighthill (1965, 1967) has considered in some detail applications of the theory 
to moderate amplitude waves on deep water (where certain ‘ pseudo-frequencies ’ 
are absent); he discusses in particular the dispersive effects of: (i) a large frequency 
spread, and (ii) substantial amplitude variation but almost constant wave- 
number, on a finite amplitude wave-group. In his second paper a polynomial 
approximation to the average Lagrangian for deep water waves is derived, valid 
for all amplitudes. Whitham (1967) considers the one-dimensional propagation 
of finite amplitude waves in the case of finite depth. Both authors report sub- 
stantial agreement between their analytical results and the results of Benjamin 
& Feir (1967) obtained in their experimental and analytical study of the insta- 
bility of deep water waves. 

A general account of the whole field was given in a recent Royal Society Dis- 
cussion Meeting (Lighthill 1967). On page 33, there is a preliminary discussion 
of the application of the Whitham theory to waves that are stationary on a uni- 
form stream. This is followed up in more detail in the present paper, which derives 
from an attempt to apply the Whitham theory to the ship-wave problem. Rela- 
tive to a ship in uniform motion the wave pattern is stationary, and it should be 
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correspondingly easier to check theoretical predictions of nonlinear effects ex- 
perimentally than in the non-steady problems previously considered. 

The theory of ship-waves was first considered by Kelvin who showed that in 
general the wave pattern contains two families of waves: (i) the transverse waves 
which follow in the wake of the ship, and which tend to predominate at  low 
Froude numbers, and (ii) the lateral or diverging wave system important at  
higher Froude numbers. On the whole more attention has been given to the trans- 
verse waves and it might be of more interest now to study the development of the 
lateral part of Kelvin’s solution produced by a speedboat, say. Although a non- 
linear treatment of waves generated by a ship moving at a high Froude number 
would be very valuable, it  appears still too difficult to carry out in practice, and 
a somewhat simpler problem is treated here, chosen as a possible introduction to 
the ship-wave case. The difficulty in the latter case is that the energy of waves 
generated by a ship tends to be spread over a rather large region of wave-number 
space, so that near the ship it is in general impossible to have a gradually varying 
wave pattern. One cannot, therefore, specify suitably smooth boundary con- 
ditions such as are necessary if the themy is t o  predict the future development of 
the waves. An easier problem is to consider open-channel steady flow past a slowly 
modulated wavy wall of constant wavelength. In  this case the energy induced in 
the wave motion occupies a relatively narrow band of wave-numbers. 

This is the problem treated below. The water is assumed to have infinite depth 
so that a suitably modified form of Lighthill’s formula for the average Lagrangian 
can be used. Although time dependence is now removed, the dispersion equation 
proves to be so complex that in the present context only a numerical solution can 
be contemplated. 

2. Derivation of the dispersion equation 
In  terms of a Cartesian frame (x, y, z )  with associated unit vectors (i, j, k) the 

wall is given by y = f(x), and in the undisturbed state the water will be supposed 
to occupy the region - co < x < CO, f(x) < y < 00, - co < z < 0. The mean velo- 
city of the water is taken to be Ui. 

Lighthill (1967) has given an approximation to the Lagrangian density 
function, 9, for waves on deep water in terms of the frequency w and the 
wave-number K .  This says that 9 K 2 / p g  (where p is the density of the water) is a 
function of Q = w2/g/c alone, and that the formula 

holds to a good approximation throughout the interval from 0 = 1 (infinitesimal 
amplitude waves) to Q = 1-20 (waves of maximum height). 

Equation (1) is written in terms of axes fixed relative to the undisturbed motion 
of the water. To obtain a form appropriate to steady flow at speed U past the 
wavy wall note that, if v is the phase velocity a t  a point where the wave-number 
is u = (1, m), and the time frequency w,  then 

w = V.U. 
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In  terms of the frame fixed relative to the wall the frequency is given by 
(Ui  + v) . K, and if this vanishes then 

o;= - Ul. ( 2 )  

The required form of the Lagrangian is derived from ( 1 )  by replacing o by - Ul 
and the wave-number magnitude K by d(12 +m2). 

To obtain the dispersion equation for the wave-field a phase function O(x, y )  
is introduced by means of the definition 

1 = O,, m = 8,, (3)  

where suffixes denote partial differentiations. The level curves e(x ,  y )  = constant, 
map out the wave crests and troughs in the (x, y)-plane. The average Lagrangian 
3 i s  now written in terms of the partial derivatives of 8 and Hamilton's Principle 
applied in the simplified form 

6 2(8,,8,)dxdy = 0. 

The calculus of variations gives the Euler equation 
ss 

or (4) 

this is a quasi-linear partial differential equation in 8, the coefficients depending 
only on the first derivatives 8, and el/. 

It is convenient to  work in terms of dimensionless variables X ,  Y ,  L, M de- 
fined by 

in which case (4)  takes the form 

where the coefficients are obtained from (1) to be: 

a(L, M )  = {( - 2L10 - 10L8Mz + 24L6M2 - 56L6M4 + 6L6 
+ 1 0 ~ 4 ~ 2  - 2 4 ~ 2 ~ 6  + 2 ~ 2 ~ 4  - 2 1 ~ 6 )  

+ J(L2 + M2) ( - 2L' - 15L6M2 + 9L4M2 + 90L4M4 + 9L2M4 - 2M6)},  ( 7 )  

b ( L , M )  = {(- 16L7M+48L7M3+8L5M+ 16L5M3+16L3M3+32L3M5+8LM5) 
+ J(L2 + M 2 )  (15L'M - 9L5M - 90L5M3 - 3L3M3 + 6LM5)), (8) 

c ( L , M )  = {(6L10+8L8-42L8M2-2L6-32L6M2+2L4M2-40L4M4 
+ 10L2M4 + 6M6) + J(L2 + M2) ( - 15L8 + 3Le + 90L6M2 - 9L4M2 - 12L2M4)}. 

The boundary conditions determining the solution of the dispersion equation 
are such that L, M and 8 are specified on some curve r in the (X, Y)-plane, and 
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it is important to know the form of (6) in the neighbourhood of this initial curve. 
This is governed by the sign of the discriminant 

A = b2-ac (10) 

the equation being elliptic if A < 0, parabolic if A = 0 and hyperbolic if A > 0. 
I n  figure 1 the continuous curves are the loci of points for which A vanishes. The 
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FIGURE 1. The mode of dispersion of a wave-group is determined by the spread of its 
energy in (I,, ~M)-space between the linear theory and maximum amplitude theory curves. 
In the regions marked - , + the dispersion is governed respectively by an elliptic equation 
and by a hyperbolic equation. The segment EF denotes the wave-number band occupied 
by the initial conditions used in the calculation. 

magnitude of M is plotted against that of L, and on ABG they are related by the 
formula L2 = 2/(L2+ M 2 ) ,  (11) 

which is that obtaining under the linear theory approximation. The portion BD 
separates the two regions marked + and - where respectively A is positive and 
negative. I n  the positive region the characteristics of the dispersion equation are 
real and distinct, and solutions 8 would be expected to exhibit the characteristic 
splitting of the group velocity noted by Whitham (1965a). I n  the negative 
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area there are no real characteristics. Maximum amplitude waves are represented 
by the broken curve, which was shown by Lighthill (1967) to be given by 

The region included between the linear theory curve and the maximum amplitude 
curve is that actually occupied by real waves. 

The point Bin figure 1 corresponds to L = 4 ( 3 / 2 ) ,  M = +J3, and its significance 
is illustrated by noting that, for example, on the linear theory of ship-waves, this 
is the point in wave-number space corresponding to the familiar cusp in the Kel- 
vin wave pattern; the transverse waves occupy the segment AB and the lateral 
waves BC. Thus for moderate amplitude ship-waves the lateral waves are gov- 
erned by an elliptic equation and the transverse waves by a hyperbolic equation. 
The present calculation is concerned with the lateral system, and replaces the ship 
by a wavy wall which results in the preferential generation of a wave pattern for 
which, near the wall, (L,  M )  lies well within the elliptic region. 

3. The boundary conditions 
The underlying idea of the Whitham theory is that the average Lagrangian 

is first calculated for a perfectly periodic wave-form which is afterwards allowed 
to vary slowly on a scale of wavelength. In  an exactly parallel manner the boun- 
dary conditions for the present problem can be obtained by first supposing the 
wavy wall to have a constant amplitude. The case of a wave-group surface is 
then deduced by allowing the amplitude factor in the conditions so obtained to 
vary slowly on a scale of the wall wavelength. 

Apart from requiring the slow variation of the wave parameters, the Whitham 
theory demands also that they be single-valued, or at least that, if two or more 
families of waves do overlap, the energy associated with one should completely 
swamp that of the others. Hence it is not feasible to attempt to obtain suitable 
boundary conditions too close to the wall. One must be content to prescribe the 
conditions near the wall, yet far enough away for spatial transients to be unim- 
portant. In  the case of the moderate amplitude cosine wall to be considered it will 
be seen that this can be satisfactorily achieved by taking the initial curve I? to 
be the straight line Y = 1, parallel to the wall. 

It is known (Lighthill 1967) that, for moderate amplitudes at least, the ampli- 
tude of a wave of given longitudinal wave-number L varies with distance Y from 
the wall as in the linear theory, although its position satisfies 

L2 = 1.20J(L2+ M2) .  (12) 

If Y is not larger than one or two wavelengths, substantial departures from the 
geometric optics approximation will not have occurred and energy will be received 
from the wall along the linear theory group velocity lines. These are given by 

X - x(L) Y = constant, (14) 

f ( X )  = A,COS W X ,  (15) 

where x(L) = BM/BL, and L and N are related by (1 1). Specifically, if the wall is 
given by 

where A, and W are respectively the dimensionless amplitude and wave-number 
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of the wall, it  will be shown that on a linear theory,approximation the wave ele- 
vation 5 near the wall may be taken as 

- 2A0 W 
= J(W2- 1) sin[WX-WYJ(W2-1)]. 

The factor 2A,W/J( W 2  - 1 )  is the wave amplitude, and is assumed to be the first 
Fourier coefficient in the expansion of the waveform. 

If A,  is now allowed to vary slowly with X, A, = A , ( X ) ,  near the wall the effect 
of this variation would be expected to be felt along the lines 

X - x( W )  Y = constant. (17) 
Thus on the initial line r, near enough to the wall for the accumulative effects of 
nonlinearity to be ignored, the appropriate wave amplitude would be 

Here A = 6g/U2, where 6 is the true amplitude. 

real, finite amplitude waves, the compatibility relation connecting I ,  m and 6: 
To determine completely the wave-number (L,  M )  and phase 6 on I? for the 

W 2 =  gK(l+K262+$K464+...) (19) 
given by Lamb (1932, p. 420) must be used. As before w2 = U2P, K = J(P+m2). 
The longitudinal wave-number L is taken to be W ,  that of the forcing mechanism, 
and the amplitude S is given by (18). M is now computed from ( 1  9) by reverting 
the series and expanding M in terms of A and L. It is easily shown that 

M = M ( L , A )  

(20) 
where the minus sign anticipates backward-facing waves. 

conditions for the dispersion equation can be set in the form, 

on Y = 1. 

Hence, since (20) gives M as a slowly varying function of X, the boundary 

L = W ,  M = M ( W , A ) ,  8 = L X + M Y ,  (21) 

In  the next section the linear theory solution will be obtained. 

4. Linear theory solution 
The wave pattern generated by a wall 

y = f ( X h  (22)  

v = i + V $ .  (23) 

wheref(X) is small, is analysed by introducing a potential $ ( X ,  Y ,  2) such that 
the dimensionless velocity v of the flow is given by 

On infinitesimal amplitude theory $ satisfies the equation 
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where Z = zg/U2, in the region -a < X < co, 0 < Y < 00, -03 < 2 < 0. Apart 
from the usual condition at  infinity, q5 further satisfies 

as Y + + 0, and 

or 

a t  2 = 0, where c ( X ,  Y) is the dimensionless surface elevation. 
The problem is readily solved by considering the double Fourier transform 

@(L, M ;  2): 

I+? is found to satisfy 

and 

as Z -+ - 0. The solution which is bounded as Z -+ - 03 is easily determined, and 
a t  Z = 0 reduces to 

2 iLJ(L) 
@ = Jz [L2-J(L2+M2)]J(L2+M2)' 

The potential q5 now follows from the inversion theorem for Fourier transforms, 
and at Z = 0 is, 

(33) 
iLf(L) eiLX cos ( M Y )  dM 

(L2+M2)]J(L2+Z2)' 

In  evaluating this double integral account must be taken of the radiation con- 
dition that no waves enter or leave at  X = - 03. To do this consider the portion 

00 cos ( M Y )  dM 
= S O  [ L z - d ( L 2 + M 2 ) ] J ( L 2 + M 2 )  

m eiMPdM eiMYdM 
0 [L2 - J(L2 + M2)] J( L2 + M2) [L2 - J (L2 + Ma)] 4 (L2 + 2 2 )  

= Il + I,, say. 

The radiation condition will be automatically satisfied if L is replaced by L - ie, 
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where e is a small positive constant, Il and I, evaluated, and E then allowed to 
tend to zero. 

First note that both integrands possess simple poles at  

M = f LJ(L2- l), 

and branch points at  M = +_ iL. To evaluate Il consider the integral about the 
contour shown in figure 2 ,  consisting of the real axis from M = 0 to R, the circular 

ix 

0 R 

FIGURE 2. The contour used in evaluating I, .  The pole lies 
within the contour if L < 0 and outside if L > 0. 

arc C from M = R to iR, and the imaginary axis indented at  the branch point A ,  
from M = iR to 0. When L is replaced by L - ie in the integrand, the pole on the 
positive real axis is shifted into the interior of the contour if L < 0, and into the 
lower half-plane if L > 0. Hence, after letting e+o,  its contribution to the in- 
tegral may be written in the form 

niH( - L)  
exp ( - iLYd(L2 - 1)) = H (  - L)P(L),  say, Ld(L2 - i) 

where H is the Heaviside unit function. Thus, as R + 00, 

11 = H(-L)P(L)+ 
A 

In a similar manner it is shown that , 
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Combining Il and I2 one eventually obtains 

= - f ( L )  exp ( iLX - i~ Y J ( L ~  - 1 )> d L  Sm 4(L2 - 1 )  

505 

at 2 = 0. 
In  the first instance f ( X )  is the uniform wall 

f ( X )  = A, cos ( W X ) ,  

for which f ( L )  = +A,[&(L + W )  + &(L - W ) ] ,  
(37) 

(38) 

where 6(x) is the Dirac function. Substitution in (36) and use of ( 2 6 )  leads to the 
expression 

(39) 
for the elevation of the free surface. The second term here represents a disturb- 
ance confined to the immediate neighbourhood of the wall, and the proportional 
error involved in its neglect is easily shown to be less than 

J( W2- 1)e-WY 

r is taken to be the straight line Y = 1 .  The error along I' is therefore less 
than 4 yo and is rapidly decreasing further as the solution progresses (figure 4). 

The dimensionless amplitude A thus takes the form anticipated in ( 1 8 )  on I?, 
and since the group velocity lines are 

~ ~. 

W J ( 2 7 r W Y )  * 

( 2 W 2 -  l ) Y  
J ( W 2 - 1 )  - constant, x -  ~- .___ - (402 

the geometric optics approximation to the amplitude at-(X, Y )  finally takes the 
form 

This is the value to be used in the conditions ( 2 1 ) .  

5. Solution of the dispersion equation 
The problem of solving the dispersion equation, 

a p ,  M )  ex, + 2 ~ 5 ,  M )  ex, + C ( L ,  M )  e,, = 0, (42) 

must now be considered. The solution is required in the half-plane Y > 1, and 
the boundary conditions to be imposed on Y = 1 have been shown to be 

L = W ,  M = M ( W , A ) ,  8 = L X + M Y ,  (43) 
where A is given by (41 ) .  Since ( 4 2 )  should be elliptic near the wall, W must be 
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chosen to lie in the elliptic region of wave-number space, and in the calculation 
presented below W = 1.8. The values of L in the solution must be expected to be 
of the same order of magnitude, while, by (ll), M N 2.7. Under these circum- 
stances it is difficult to construct an efficient approximation to the coetficients 
a, b,  c which might enable some form of analytic solution t o  be obtained. It is 
more satisfactory to retain all the terms in the expressions for the coefficients and 
to adopt the numerical method of solution to be described. 

The problem, then, is to solve the elliptic equabion (42) under the Cauchy- 
type boundary conditions (43). In the classical sense this is ‘incorrectly set’. 
However, the Hadamard concept of a well-posed initial value problem, namely 
that the solution be stable under arbitrary perturbations of the boundary con- 
ditions, is not applicable in this case. Here the boundary conditions are all 
functionally related, and arbitrary, independent perturbations therefore not per- 
mitted. Lieberstein (1959) has discussed such problems in relation to second order, 
linear elliptic equations. He defines the initial value problem to be ‘stably- 
posed’ if the perturbations can be confined to a restricted class of functions, 8, 
for which the solution remains stable. It will be seen later that this definition may 
be extended to cover the present quasi-linear equation by requiring the class S, 
and so also the boundary conditions, to consist of those real functions for which 
there exists a sufficiently large region of the complex X-plane into which they 
may be analytically continued. This implies that the initial values of the wave 
parameters and their analytic continuations be smoothly varying functions. 

UsualIy Cauchy-type boundary conditions are associated with hyperbolic 
equations, and the natural way is to solve by the method of characteristics. 
Recently techniques have been developed which permit elliptic type problems 
to be solved in the same way. Garabedian & Lieberstein (1958) have described in 
detail such a method, and used as an example the problem of subsonic flow 
behind a bow shock wave. A brief resum6 will be given here. 

Let (a, ,8) denote the characteristic co-ordinates of (42). When the equation is 
elliptic these will in general be complex. One can define a new pair of co-ordinates 

which have the property that real solutions of (42) in the (t, r)-plane correspond 
to real solutions in the ( X ,  Y)-plane. Of course the relationship between (X, Y )  
and (E,?)  is not known in advance, and must be calculated in a step-by-step 
manner simultaneously with L, M and 8. 

In  terms of these new co-ordinates the solution of the dispersion equation sub- 
ject to the conditions (43) is equivalent to the solution of the canonical elliptic 
system 
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under the same boundary conditions. This set of equations is conveniently de- 
noted by 

where R is the column vector of unknowns and B the matrix of coefficients. Since 
a.ny function of a characteristic co-ordinate is still a characteristic co-ordinate, 
there is a freedom of choice of the initial curve y in the ((,q)-plane along which 
the conditions (43) are to be imposed. This may be taken as the y-axis. Further, it 
may be supposed that along y, X = P(r) ,  where F is an arbitrary real analytic 
function of 7; in the present application F(7) = 7. 

The important step now is to notice that, if ( X ,  Y ,  L, M ,  0) can all be considered 
as analytic functions of the complex variable 7 = h + ia, say, then, by the Cauchy- 
Riemann equations, the derivative R, ( = R,) on the right-hand side of (45) may 
be replaced by R J .  If A is now held fixed at  A,, the canonical system which is 
elliptic in the real (6 ,  r)-plane becomes the hyperbolic system 

R6 = BR,, (45) 

Rg = ( W R * ,  (46) 
with the real characteristics 

5 a = constant 

in the (5, cr)-plane. Hence, provided that for each A, the data given on the (real) 
7-axis can be analytically continued into the complex 7-plane to become data on 
the a-axis, the hyperbolic system can be solved by a stable step-by-step pro- 
cedure in the (5, a)-plane. At a = 0 the solution so obtained reduces to the soh-  
tion in the real (6 ,  ?)-plane on the line 7 = A,. A complete covering of any portion 
of the real (6 ,  r)-plane is obtained by repeating this procedure over a whole range 

The philosophical difficulties involved in requiring that the data be continuable 
into the complex 7-plane have already been discussed (Lighthill 1967). The 
Whitham theory assumes at  the outset that the wave parameters are in some 
sense ' smooth ' functions of position. It is now clear that their variation must be 
smooth enough to permit their being continued sufficiently far into the complex 
X-plane without meeting any singularities. This is precisely the casein the present 
problem. 

The system (46) is solved numerically by adopting a finite difference approxi- 
mation. That used here is the scheme originally proposed by Garabedian & 
Lieberstein in their paper. Let At ,  Acr denote positive increments in 6 and a, 

of A,. 

where R(6, a), B(5, a) are the vector and matrix of (46). The latter is now approxi- 
mated by 

Rm+I,n = Rm-1,n +S[(Bm,n+l +Bm,n-,)/2il (Rm,n+I-Rm,n-J, (48) 

where s = A[/Aa. The characteristic roots of Bji are easily determined to be 1, 
- 1,0,  so that the solution of the initial value problem for (48) would be expected 
to be stable provided s d 1. The truncation error in using (48) is of order (Aa)2. 
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It is convenient to take A[ = Acr and to adopt the mesh of points shown in figure 3, 
where only values of m and n whose sum is even are required. The only mesh 
points used in the calculation for which cr is negative occur at  n = - 1, and since 
both R([,  0 ) ,  B ( [ ,  0) are real, their values a t  these points are given by the reflexion 

where 23z,l denote the complex conjugates of Ern, Brn,l. 

I. Calculate Ro,n for n = 0 , 2 , 4 , .  . ,, 2N, say, from the initial conditions. 

The calculation may be summarized as follows. 

i 
n = 8  x 

n=6 X 1/ X Dataline 

X 

Real output 
n = 4  x I x x  x 

n = 2  X I x x x x  
I x  

X 

xL X 

x-x n = O  x-x- 

X x x  X 

II I1 11 II II 
E E s E E 

0 c1) v W m 

FIGURE 3. The system of mesh points used in the finite difference caIcuIation. Complex 
data ‘read-in’ along the o-axis produces real output along the (-axis. 

11. Calculate Rl,n for n = 1,3,5, .  . . , 2N  - 1, by means of (48) with R-l,n replaced 
by $ ( R ,  + Ro,n-l) and s replaced by 4s. 

111. Calculate through repeated application of (48) the remaining values of 
Brn,n such that m + n is even and does not exceed 2N. 

The ‘real output’ of the calculation occurs along the <-axis in figure 3 at the 
N points m = 2,4,6, .  . ., 2N. This output will be the numerical value of the vector 
R = ( X ,  Y, L, M ,  O), so that each line 7 = A, corresponds to a curve C, say, in the 
( X ,  Y)-plane along which L, M ,  8 take values given by the output R. 

6. Numerical solution for the wavy wall 
In the present calculation the slowly modulated wall is given by 

f(X) = ( S / W )  exp { - ( 2 X / L d 2 )  cos (WX), (50)  

where, relative to the length scale U2/g,  S/  W is the maximum amplitude and L, 
is the effective length of the wave-group surface. The wall is characterized by the 
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three dimensionless parameters S ,  L G  and K S represents the maximum slope of 
the wall, LG its length, and W the ‘natural’ frequency. The values used here are: 

S = 0.07, L G  = 6,, W = 1.8. 

The wavelength of the wall is 2n/l.8 N 3.5, so that the wave-group surface con- 
sists effectively of seven humps, three on either side of the central maximum. 
The maximum slope is small, but reference to figure 1 shows that the region of 
wave-number space occupied by the initial conditions for this value of S is 
represented by the line EP, and the tip B of this line, corresponding to the maxi- 
mum amplitude of the wall, is close to the boundary BD of the elliptic region. 
This would seem to indicate that quite large waves may be generated by moderate 
amplitude walls, and is a consequence of our considering the large Froude 
number case. 

The object of the numerical calculation is to obtain a map of the curves of 
constant phase, 8, near the wall. This has been accomplished by solving the dis- 
persion equation, in the manner described, above forty-one times at  equally 
spaced points on the initial line Y = 1, from X = - 10 to X = + 10. In  each case 
N ,  the number of output points was taken to be 30, and the mesh size A t  = A(T 
was never greater than 0-17. By interpolation between the output points on C ,  
co-ordinates (X, Y )  of the points of intersection of 100 level curves of 6’ with C 
(from 8 = - 21.0 to 18-6) were obtained, and the curves of constant phase 
subsequently plotted. 

The calculation was performed on an IBM 7090 which requires about 3.7 min 
to obtain the output for each curve C, including the interpolation. The com- 
plete calculation requires a minimum of 24 h machine time. Except in the shock- 
like region to be discussed below the numerical procedure proved to be very 
stable, differences being noted only in the sixth significant figure on trebling the 
mesh size. 

7. Discussion of results 
The phase plot is shown in figure 4. It can be seen that the numerical calcula- 

tion has produced a regular pattern of wave crests which on the left are almost 
rectilinear, but which tend to exhibit a bulging towards the left on moving in the 
positive X-direction. Eventually this bulging becomes so pronounced that a 
genuine discontinuity develops, resulting in the formation of a type of ‘shock’. 
The dispersion equation remains elliptic except at  the shock, where the numerical 
procedure becomes violently unstable. The interpretation of these results is that 
the wave amplitude is greatest where the bulging occurs. The latter is thus a 
consequence of amplitude dispersion, where larger amplitude waves have the 
larger phase velocity. Indeed, it is easy to see that the development and begin- 
ning of the shock occur approximately along that linear theory group velocity 
line which passes through the point marked P in the figure where the wall ampli- 
tude f i s t  becomes significant. Moreover, inspection of the numerical results 
reveals that below this line the wave-number lies further into the elliptic region 
than above, so that the waves here have a correspondingly larger amplitude. The 



12
 - 

- 
12

 

U
 
c
 

x 
=

 x
gj

uz
 

F1
Q

Q
-E

 
4.

 T
he

 w
av

e 
pa

tt
er

n 
pr

od
uc

ed
 b

y 
fl

o
w

 p
as

t 
th

e 
w

av
y 

w
al

l. 
T

he
 ‘

sh
oc

k’
 d

ev
el

op
s 

ap
pr

ox
im

at
el

y 
al

on
g 

th
e 

lk
ea

r 
th

eo
ry

 
gr

ou
p 

ve
lo

ci
ty

 li
ne

 fr
om

 P
. T

he
 w

al
l i

s 
dr

aw
n 

to
 a

n 
ex

ag
ge

ra
te

d 
sc

al
e.

 



Nonlinear theory of open-channel steady jlow 51 1 

result is a tendency for the outer wave crests to lag behind because of their smaller 
phase velocities. This is clearly visible in the figure, and strikingly so after the 
shock has developed. 

Across the shock there is an abrupt change in the direction of the wave crests 
and the magnitude of the wave-number, the waves being more closely packed 
on the side remote from the wall. Feir’s experiments on one-dimensional, non- 
steady wave-trains indicate that in the region of the shock there is no pronounced 
turbulent dissipation or humping-up of the water: it is a confused region in which 
the wave crests execute a curious ‘wiggle ’ and emerge on the other side changed 
in direction and spacing. It is possible, however, that the solution obtained here 
is not valid behind the shock. In the case of gas dynamics the simple wave 
approach to the solution behind a caustic gives misleading results for strong 
shocks, and the solution there must be derived from jump conditions across the 
shock. 

Whitham ( 1 9 6 5 ~ )  has suggested that it might be possible for shocks to 
develop in the hyperbolic case, and that they could probably be treated in the 
context of his theory by introducing suitable jump conditions. Lighthill (1965, 
1967) has already anticipated the appearance of shocks in the elliptic case. In 
his treatment of the theory he studies the development of a slowly modulated 
wave-group of nearly constant wave-number, and predicts the appearance of a 
singularity in the wave-number and amplitude after a certain time, t,, say. He 
shows further that there is an apparent ‘incubation period’ in which very little 
change in the wave-form occurs before time t = 0*7t,. This may be compared with 
the present case where the shock appears to develop quite rapidly from a fairly 
smooth wave pattern. Also, as in Lighthill’s case, the wave-number magnitude is 
increased ahead of the shock and decreased behind. 

Experimental support for the Whitham theory has so far been confined to the 
study of the development in time and distance of a one-dimensional wave group 
on deep water (Benjamin & Feir 1967), where a shock-like instability has been 
observed. Since this interesting phenomenon also occurs in the present case, 
where, moreover, the wave pattern is stationary, permitting relative ease of 
measurement, it seems desirable to do experiments with a wavy wall to see what 
happens in the neighbourhood of the discontinuity. Information obtained in this 
way would also be of considerable value to the further study of high Froude 
number ship-waves. 
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